
AD-A103 638 NORTH CAROLINA STATE UNIV RALEIGH OPERATIONS RESEARCH F/6 12/2
PROCEDURES FOR HEURISTIC SCHEDULING UNDER LIMITED RESOURCES IN -ETC(U)
JUN 81 S E ELMAGHRABY. Z M NAMAN DAAG29-79-C-0211

UNCLASSIFIED NCSU-OR-178 ARO-16352.9-M NL

E"hmmmhhlhhlhlll
EU.IIIIII

UNCLASSIIj LE t___V " SECURITY CLASSIFICATION or T.41!, PIA(IF 1Vhon no.te i'.,.d) jKI D
-- READ INSTRUCTIONS'ZREPORT DOCUMENTATION PAGE BAEFORE COMPLETING F~ORM

PORTN NMSe~ 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

16352.9-MV 3A x k "
TI-S, -TYPE__ QSXLP~u'PsW COVI!E

(Procedures for Heuristic Scheduling,)Under Tcncl1

Limited Resources in Activity Networks- EFRIGOG EOTNME

7. AuzMgt(. OTAC IA.

S.E 'lmgrb DAAG29-79-C,7il ,,/

39. PERFORMING ORGANIZATION NAME AND ADDRESS 1U.. 4PRO6RAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

_North Carol ina State Un ivers ity
W Raleigh, NC 27650

!11II. CONTROLLING OFFICE NAME AND ADDRESS 11 AGNXIATE

U. S. ArnWr Research Off'ice un81

Post OffIice Box 12211IL 1. Vf8WFPAE

r Research Triangle Park, NC 27709 2

14. MOIORN AN C AT ME &o ADDE . aIf different In, Cnto llin 0 Idffe) f 15. R EUIYCAS.(ftieport) P 2 18

IG. DSPPLEMENTAYNTESET(fti eo-7

Apoti o pblic oredeise ion, b unlesodsinated.b te ocmnain

17. DA MAX T ATEMENT (of e abtf eneed In lac 20. Ito diffrnt bre po) t

reor.The wprogrmns, w/rfittndigoie in FORRAN Weor give th of the orm
lI aulohrts representond nd ae pinstudanofceatet of the intutinrupnrqus)

c- lop oleuamltpolmesinldd.Ti program isriti availalelatg

L omnlfefothGrdaePormiOperations Research, CSaeUiest

of thre priritECUResTt CLASheduTle Ociite under PAniton of he liie.Etr

ONS RESEARCH

DTIC
EECTE

DISTRIMFON sT~M!TA18
Appwovd Impub~o ndeas D

NORTH CAROLINA STATE UNIVERSITY AT RALEIGH

PROCEDURES FOR HEURISTIC SCHEDULING

UNDER LIMITED RESOURCES IN ACTIVITY NETWORKS

S.E. Elmaghraby and Z.M. Naman

OR REPORT NO. 178 JUNE 1981

Classification Code: Activity Networks

Scheduling

This research was partially supported by NSF Grant No.

ENG-7817936 and ARO Contract No. DAAG29-79-C-0211.

F~Cession For
NTIS GRA&I -- DT
DTIC TAB ELECT
Unannounced SE D18

SDT
Availability Codes

Avail and/or
D~ist Special

DISTRIBUTION STATEMENT A.

Approved for public release,
Distribution Unlimited

PROCEDURES FOR

HEURISTIC SCHEDULING UNDER LIMITED RESOURCES

IN ACTIVITY NETWORKS

Abstract

This is the documentation of a program that permits the analyst

to choose any one of three priority rules to schedule activities under

conditions of limited resources. The program is written in FORTRAN.

We give the logic of the programs, a flowchart representation, and a

printout of the instructions (upon request). Also, a solved sample

problem is included.

This program is available at a nominal fee from the Graduate

Program in Operations Research, N. C. State University, P. O. Box 5511,

Raleigh, NC 27650.

4kz

PROCEDURES FOR HEURISTIC SCHEDULING UNDER

LIMITED RESOURCES IN ACTIVITY NETWORKS

S. E. Elmaghraby and Z. M. Naman

This package consists of two programs:

1. SETUP: To setup the variables in a form readable

by lISP (heuristic scheculing procedure)

2. HSP: To schedule the activities prepared by SETUP.

I. SETUP

This program is to set up the variables needed for the schedul-

ing program HSP, namely the network, activities' duration, resource

consumption and resources availabilities. The following are its options:

GN: GN=l The network is randomly generated

GN=2 The network is read in

GRAND: GRAND=I The network parameters are randomly generated.

GRAND=2 The network parameters are read in

CONV: CONV=l Convert the network to A-on-N.

CONV=2 The network is A-on-N.

Any combination of the above options could be used. For

example,

GN=l , GRAND=2 , CONV=1

means: To generate the network randomly;

The network parameters are read in; and

The network is A-on-A, so convert it to A-on-N.

2

Input Sequence

1. Options: GN, GRAND, CONV

2. Number of nodes, number of arcs

3. IF the network is read THEN

IF it is A-on-A THEN give a list of pairs (Node i,

Node j) to represent arcs in the network

ELSE [The network is A-on-N] give the upper triangular

matrix without diagonal (the adjacency matrix)

Which is a (0,1) matrix given row by row.

ELSE Generate the network randomly;

4. Read the number of resources

5. IF the network parameters are randomly generated THEN give

the following information:

1. L3: Maximum desired activity duration

2. N3: Maximum desired resource requirement

3. F > 1: Resource allocation factor

[To get the resource allocation we find the average

resource used, then we multiply it by F.

Average resource = Total resource/critical path.]

ELSE [The parameters are read in] give the following

information:

1. Duration of each activity

2. Resource requirements to be given as FOR each

activity

3

FOR each resource

RI: Resource required

1)1: Duration of this request

I ND

END;

3. Resource availability for each resource

END

Example: 1, 1, 1 [option card] [generate the

network, generate the parame-

ters, convert to A-on-N]

20, 60 [network specification card]

r20-nodes and 60-arcs]

3 [number of resources card]

[3-resources]

15, 10, 1.5 [parameters generated informa-

tion] [L3=15, N3=10, F=1.5]

Intermediate Output:

1. Provided or generated information

2. Network as A-on-N (arc list)

3. Number of activities

4. Upper bound on project duration

5. Lower bound on project duration

6. Activity data

7. Resource availability levels.

Program Limitations:

1. Maximum number of resources = 4

2. Maximum number of activities = 99

3. Maximum sum of durations = 350

To increase the above variables, the program DIMENSION

must be changed.

4

4. To add the network generator, do the following:

a. Replace the comment card which indicates the

position of the network generator by calling

card.

b. Take out all the "c" at Column 1 in the next

Do-loop.

c. Add the arrays NE and NS in the DIMENSION

statement.

5. For the random number generator, please look at the

note given in "NETWORK GENERATION" program descrip-

tion, OR Report No. 179, June 1981, p. 4.

II. liSP

The project scheduling problem is to assign start times to all

the activities in A. Each of these start times must respect the pre-

cedence and resource constraints described above. Another assumption

made in this study is that of non-preemptive scheduling: Once started,

an activity must continue without interruption for its duration. As

well as respecting all constraints, schedulers attempt to assign start

times so that some objective is achieved.

The objective of the scheduling algorithm presented below is to

minimize the project duration. Define the set, A(i), to be the set of

activities immediately succeeding i. By L we denote the set of activi-

ties having no successors. Activity i is in L if A(i) is the empty

set. Project duration is then obtained as the max (t(i) + d(i) - 1).
icL

Necessarily, the maximization of total resource utilization is accom-

plished by minimizing project duration. Moreover, minimizing project

IS

duration also assures the minimization of delay penalties incurred

per period beyond the (resource free) critical path length. Finally,

the chosen objective is applicable to a variety of situations. For

example, a capital intensive project, such as a large construction

project, might require substantial financing to secure the necessary

resources. Interest payments on the borrowed capital cut into the

constructor's profit until the project is completed and the resources

are no longer needed. Minimizing project duration thus minimizes

such interest costs.

Heuristics Employed

In the heuristic scheduling procedure, an adapted binpacking

rule is used to assign the activities to the resource units. The

first fit decreasing (FFD) binpacking rule is one of the most popular

scheduling rules. It has also been applied with some success to

the problem of memory storage allocation by some computer scientists.

The FFD rule specifies the packing of different sized objects into

containers or bins. The objects are first ordered by decreasing size.

The largest object is then assigned to the first container in which

it will fit. The second largest object is then assigned to the first

container in which it will fit, etc. In the project setting, the

objects are the jobs and the containers are the resources. There are

as many "containers" as there are different resources, with each

job "occupying" all containers simultaneously. This is a

multi-dimensional binpacking problem which we wish to avoid by

Li

6

adopting a simple rule for "sizing" the jobs. We address this

"sizing" problem next.

For project scheduling, it is clear that the limited avail-

L ability of the various resources may cause an activity to be delayed.

Such delays can result in project completion delay. A measure of

the delay in project completion caused by delaying an activity

should serve well as an activity's "'size."~

The original idea for measuring the project delay caused by

delaying activity i was to sum the durations of all activities

succeeding activity i in the precedence ordering plus the duration

of activity i itself. The larger the priority number ("size") of

activity i, p(i), the longer the expected project delay should be,

if activity i is delayed. To reduce the computational burden, we

adopted a slightly different priority number:

fd(i) if A(i)=

pMi

Ld(i) + p(j), if A(i) ~ci

jEA (i)

These numbers can be assigned in one pass through the precedence

ordering. However, the recursion allows the counting of some dura-

tions more than once in determining the priority number for certain

activities.

7

The two other priority rankings available in this package

are: the longest remaining path (LRP) heuristic and the shortest

imminent activity (SIA) heuristic. LRP gives a higher priority to

an activity with a longer critical subpath (to project completion)

than a competing activity. The SIA heuristic mimics the shortest

processing time rule from job shop scheduling. Characteristic of

both schemes, and a number of other heuristics, is the neglect of

the total impact on project completion that delaying an activity can

produce. The impact of delaying an activity can affect all its

successors. The proposed priority ranking is an attempt to reflect

the full impact of delaying an activity on the project duration by

adopting a simple surrogate measure.

To sum up, the three heuristic "sizing" priority rules are:

CR1: The sum of durations of all succeeding

activities

CR2: The longest path to project termination (LRP)

CR3: The shortest imminent (available) activity (SIA)

The scheduling process begins by forming the set, CS, of all

activities where predecessors have been scheduled prior to the current

scheduling period. On the first iteration, CS will consist of all

initial activities (i such that B(i) =). In general CS will contain

activities that are unordered with respect to precedence. The adopted

FFD rule assigns activities of CS to available resource units. The

activities are the items, ranked by decreasing "size" (priority number).

The "size" of each bin in a particular scheduling period will be the

8

number of available units of that resource type. The activities are

checked for fit starting with that activity whose priority number is

the largest in CS. If activity i "fits", then activity i is scheduled

to begin on period Ti. After updating resource availabilities, the

next activity is checked for fit, etc., until all activities in CS

have been considered for scheduling at TI, where TI is the current

scheduling period.

The algorithm is iterative in nature. CS and TI are updated

after each iteration. The process repeats until all activities are

assigned. The updated scheduling period is determined by the completion

times of the activities scheduled during the previous iteration. It is

the earliest completion time of any of the activities scheduled in the

previous iteration.

TInew = Tlol d + min (M(i, TIold d(i)),

iECSold

where d(i) is the duration of activity i, and

fo1 if activity i started on TI°I d '

M(i,Tlold) =

if i not started on TIld.

old'd

Tile intention in skipping over the intervening periods between TIold

and Ti is to avoid wasting time attempting to schedule activitiesnew

when few resources are available in the scheduling period. Upon

completion of an activity, resource units are "released" and other

activities can perhaps be undertaken. A flowchart of HSP logic is

shown in Fig. 1.

An Example

26

(6,3)

(3,3)

7(d(), c))

(7,3)

4- 5

(4,3) (5,3)

The figure above is a graphical representation of the precedence

relationship among the seven activities of an example project. An arc,

(i,j) implies that activity j cannot be started until activity i has

been completed. For example, activities two, three, and four cannot

be started until activity one has been completed. Assume that activity

durations, d(i) = i, for i = 1,2, ..., 7. Also, one resource type is

required in quantities of three units per day by each activity

(c(i)(j) = 3, for j = 1,2, ... , d(i)). Six units of the resource are

available for each of the scheduling periods (r(t) = 6, for

t = 1,2 ... , T where Y is an upper bound on project duration).

First, the priority numbers are assigned in one backward pass

through the precedence network. Suppose we adopt priority rule CR1.

Activities six and seven are the terminal activities of this project

(i.e., L = {6,71). Thus their priority numbers are just their durations

(p(6) = d(6) = 6, p(7) = d(7) = 7). Priorities for the immediate pre-

decessors of six and seven, activities two, three, and five, can now

be computed. Their priorities are the sum of activity duration and

10

the priority numibers of the successors: p(2) =d(2) + p(6) =2 + 6 8,

p(3) =d(3) + p(6) = 3 + 6 = 9, p(5) = d(5) + p(7) = 5 + 7 = 12.

Activity four has priority p(4), given by the sum of its duration and

the priority number of its successor, activity five. Thus p(4)

d(4) + p(5) = 4 + 12 = 16. Finally, activity one has as successors

activities two, three, and four. Thus p(l) = d(l) + p(2) + p(3) +

pM = 1 + 8 + 9 + 16 = 34. Now that activity priorities have been

computed, the scheduling process can begin.

On the first scheduling iteration, CS will consist of activity

one since it is the lone initial activity in the project. Three units

of the resource are required by activity one, and six units are avail-

able on day one. Thus activity one is scheduled for day one.

Day two is the updated scheduling period on the second iteration

since activity one is completed on day one. CS will consist of activi-

ties two, three, and four, the immediate successors of activity one.

The scheduling priority is four (p(4) = 16), three (p(3) = 9), and

two (p(2) = 8). Activity four is first checked for fit. Three units

of the resource are required on days two through five, and six units

are available. Since activity one is completed by day two, activity

four is scheduled to start on day two. Now only three resource units

remain available on days two through five. Next, activity three is

checked for fit. Three resource units are required by activity three

on days two through four, and three units are available. Activity one

is completed by day two, so activity three is scheduled to start on

day two. Thus no units of the resource are available on days two,

three, and four. Activity two is checked for fit next. But, with no

11

resources available and three units required, activity two cannot be

scheduled on day two. So the set CS and scheduling period are updated

and we proceed to the third iteration.

The new set of activities to be scanned will include activity

two that was not scheduled on the previous iteration and activity five

since its predecessor has now been scheduled. The new scheduling period

is day five since, of the two activities scheduled on the previous

iteration, activity three finishes sooner (on day four) releasing some

resources. Activity five has a larger priority number than activity

two. Hence activity five is considered for scheduling before activity

two. However, activity four is still in progress on day five so activ-

ity five is ineligible for scheduling on day five. Next, activity two

is considered for scheduling on day five. Three units of the resource

are required by activity two on days five and six. Three units are

available on day five, and six units are available on day six. No

precedence constraint is violated, so activity two is scheduled to

begin on day five. With that assignment, no resource units remain

available on day five and three units remain available on day six.

Both activities in CS, at this iteration, have been checked. We pro-

ceed to update CS and the scheduling period for the next iteration.

The updated CS consists of activities five and six since the scheduling

of activity two releases activity six for consideration. The new

scheduling period will be day six since activity four is completed on

day five.

On the fourth iteration, activity five has priority and is

scheduled on day six. Available resource units are updated and

12

activity six is considered. Sufficient resources are available, and

no precedence constraint is violated in starting activity six on day

seven. Hence, that assignment is made.

Finally, activity seven is considered on the fifth iteration.

The updated scheduling period is day eleven (given by the completion

of activity five). No resource or precedence constraints are violated

by starting activity seven on day eleven so that assignment is made.

The resource "skyline" or profile chart below illustrates the example

project's schedule. The project is completed on day seventeen. This

duration coincides favorably with the project's critical path length

in the absence of resource constraints (seventeen days), and is there-

fore optimal.

Resource Limit Availability

3.

___i -4
5 10 15 20 Time

(flays)

(Shaded areas represent idle resource-time)

The project scheduling algorithm described above is an analog

of the heuristic algorithm for the ALB problem called the "Ranked

13

Positional Weight" heuristic, which was proposed by Hegelson and Birnie

in 1961. An extension of this heuristic was suggested by Mansoor in

1964.

Advantages of Heuristic Scheduling

A significant contribution of heuristic scheduling might be that

of increasing the computational efficiency of optimal project schedul-

ing procedures. One attempt might be to link the proposed scheduling

algorithm (or any other good heuristic algorithm) with a branch and

bound algorithm. For such a tandem algorithm, the size of the space

to be searched will be smaller than the search space of a straight-

forward branch and bound procedure.

We have noted that a lower bound on project duration is the

critical path length. Similarly, we obtain a lower bound on the start

time of an activity by computing the earliest start schedule (ESS).

The ESS neglects any resource constraints and starts an activity as

soon as all precursory activities are completed:

max (ESS(j) + d(j)), if B(i) J ,
jeB(i)

ESS(i)-

1 if B(i) = 4.

If a tight upper bound on optimal start time is available for all

activities, then the chance of finding an optimal schedule by a

branch and bound scheme is greatly improved. A good heuristic

algorithm will provide such a bound at a small price.

14

The heuristic's schedule yields a feasible project duration, T.

The late start schedule, LSST , analogous to the early start schedule

described above, is computed:

min (LSST(j) - d(i) + 1), if A(i) 4 0,
jcA(i)

LSST(i) =

T - d(i) + 1, if A(i) =

The optimal start time(s) of activity i is(are) now bounded:

ESS(i) < Topt(i) < LSST(i). Activity i cannot be started before its

predecessors are completed (ESS(i)) and an optimal schedule cannot

start activity i after its late start time with project duration T

since T < T.opt -

Thus the search tree of the branch and bound procedure is pruned.

The tightness of these bounds and hence the reduction of the search

space is increased as the heuristic schedule is improved. Therefore,

an efficient, dependable heuristic scheduling algorithm

might play a crucial role in increasing the computational reliability

of an analytical procedure for the project scheduling problem.

The following information is needed to be passed from

SETUP:

1. Number of resources

2. Number of activities

3. Upper bound of planning horizon

4. Network in A-on-A

5. Availability of each resource

6. Requirement of each resource/activity/time period

15

7. Duration of each activity

8. Index vector K

9. Early start schedule

Options

P7: P7=1 Do not print iteration information.

P7*2 Print iteration information.

SCH: SCH=l Scheduling using CR1

SCH=2 Scheduling using CR1 and CR2

SCH=3 Scheduling using CR1 and CR3

SCH=4 Scheduling using CR1, CR2, and CR3

For example, P7=2

SCH=3

imply: Print iteration information.

Use CR1 and CR3 as priority criteria.

Input Sequence

P7, SCH [on the same card]

Output

1. For each scheduling iteration (optional)

a. Current scanned subset of activities and their

priority numbers

b. Activities delayed because of resource limited

availability

c. Activities delayed because of precedence

d. Activities scheduled

2. Project table

For each activity Print:

Duration, Priority number, HSP-start, Early-start

16

3. Resource utilization

For each resource Print:

a. Time, availability, utilization, leftover

b. Draw the skyline for the resource utilization

vs. time.

4. Adjusted percent resource utilization, for all resources

5. Lower bound on duration

6. Completion time from HSP

7. Upper bound of duration

Limitation

Please see the limitation given in SETUP.

17

Figure 1. Heuristic Project Scheduling Flowchart

Input Project Data

JtD

Assign Priority Numbers to Activities

Update Ti1

Form CS, set of activities to be scanned
on TI

I Set K = 0

B(CS (1)) NO Al

Completed by YESTI - IJ Output

/ Enough resources NO
Available to Schedule

CS(I) on Day

NO ES

TI?

-- X' Scane 7 N
SUpdate Resource Availabilities

18

1. (OPTION) To read the SETUP

options for this RUN.

Read all the necessary OPTION

information depending on READ, GN, GRAND, C

the option that is given.

P = Number of nodes if -Print the option used in this run

A-on-N READ, NARC, NODE

= Number of arcs if GN= N

A-on-A YG

K = An array to tell where NETGEN CONV=N

each resource require- K 1 NUP = 2*NARC NUP = NODE*

ment is started for FOR I = 1 to NARC READ, V(J) (NODE-I)/2
each activity. V(K) = NE(I) J = 1, NUP J = 1, NUP

V(K+l) NS(I)

K K + 2

READ, RI

YGRAND =2

READ, L3, N3, F

+ CONVERT

READ, D(I), I = 1, P

FOR I = 1 to P

FOR RO = 1, RI

READ, Rl, DI

FOR DO = 1, D1

R(DO+K(I),RO) = R1

READ, A(1,RO), RO-- 1, RI

FOR I = 1, P

B2 = B2 + D(I)

FOR RO = 1, RI

FOR I = 2, B2

A(I.,RO) = A(IRO)

19

2. (CONVERT) To convert CONVERT

A-on-A to A-on-N and CONV = 2 N

create an array X which is

the one dimensional repre-

sentation of the upper IX1 (I-1)*(P-I/2)- I

triangle w/o diagonal FOR J = I + 1, P

matrix.
IX = IX1 + J

X = 1 if activity

I precedes J X(IX) = 0

= 0 otherwise Y V(2*I) 4 V(2*J-1) N

3. (GEN) To generate randomly X(IX) - 1

the network parameters.

D(I) - duration of each GEN

activity Y GRAND=2 N

R - resource requirement
FOR I = 1, P

for each activity at

each time period for RANDU (RAND)

each resource.

4. (CPL) To calculate the D(I) = [L3*RAND+lI]

critical path of the network. FOR I = 1 to P

The early start schedule FOR RO = 1 to RI

could be produced by

E(J) = V(J) - D(J) + FOR DO= 1 to DI)
1 _J < P where V is the RANDU (RAND)

vector generated by CPL. R(DO+K(I),RO) = [N3*RND+l]

CPL

FOR 13 = 1 to P

V(13 = D(13)

FOR I = 1 to P - 1

IXl = (I-I)*P-I/2) - I

FOR J = I + 1 to P

IX = IXl + J

X(IX) = 0 1N

V(J) = MAXCV(J), VI) D(J)

KPATH = V(P)

20

5. (AVL) To generate the AVL

resource availability by

getting the average

requirement and multiplying FOR RO 1 to RI

it by the factor F. Check Al = 0

if there is any request FOR PO = 1 to P

higher than this suggested
value. ,FOR DO = 1, D(PO)

6. (PRINT) Print and tabulate Al = Al + R(K(PO) + DO, PO)

the data that will be passed A3 = [AI*F/KPATH]

to HSP.
FOR PO = to P

FOR DO = 1 to D(PO)

A3 = MAX(A3, R(DO+K(PO), RO))

FOR TO = 1 to B2

A(TO,RO) = A3

PRINT I

Print the data that will be passed to the

scheduling program

RETURN

21

1. (INI) Read option HSP

variables P7,SCH. Set the INI

matrix L = matrix A. Set R- P

vector X to zero. READ, P7, SCH ; = A , X = 0 i = 1

2. (PRNO) Compute the priority

number by CR1. Store it in PRNO

vector E.

3. (COMPET) Get a set of FOR J = P to 1

simultaneous activities. E(J) = D(J)

Save the candidates in FOR P0 = J + 1 to P

vector S.

X = 0 if the activity has PREC(LL)

not been scheduled X LL j 1 N

X = Ti the time the activity

is scheduled E(J) = E(J) + E(PO)

LL = 0 No event between

activities PO and J COMPET

LL = 1 Otherwise L2 = 2 , S(1) = 1 , M= 1

FOR PO = L2,P

FOR I = 1,M

ORDER

X X(PO) > 0 I/N

K1 = 0, K2 =0

FOR J = 1, PO - 1

PREC (LL)

K2 = K2 + LL
I

Y X(J)*LL = 0

1 K1 = K1 + 1

M =M + 1

SCM) = PO

22

4. (ORDER) Sort the set S ORDER

according to their priority FOR I1 1 to M -1

number. FOR J3= I to M -I

5. (SCH) The beginning of E(S(I)) > E(S(I+J))

scheduling the set S.W- will N = S(I)

keep track of those activities S(I) =S(I+J)

that are scheduled or cannot S(I+J) = N

be scheduled because of

precedence constraints. H
Ti is the time counter.

W= 1

6. (RCN oceki hr iis any precedence constraints ._ ______________________

IF there is none THEN check

for resource constraints. PEO ___________

7. (ADQ) To check if theBL=0 , 2 0 *P0 SW

resources requested by FOR J =1, PO - 1

activity S(W) is available. IPREC (LL)

IF yes THEN scheduie that yLL = 0

activity, and update the BI = Bl + 1

resource available. ELSE Y - X(J) = 0

go to CHEK. X(J) + D(J) >TI

I B2 = B2 + 1

Y B2 =Bl N

-~CHEK

ADQ

FOR DO =1 to D(S(W))

FOR RO = 1 to RI

'Y--, R(DO+K(SW),RO)<_SL(TI+DO-1,RO) 7"N

-+ CHFK

X(SW) =Ti_ V(J2) = S(W) , J2 = J2 + I

-~FOR DO =1, D(S(W))

FOR RO = 1, RI

L (Tl+DO-1,RO) = L(Tl+DO-1,PO)-

I R(DO-K, RO)_

23

8. (CHEK) To check if all CHEK

the candidate activities

are checked. IF they are, W =W + 1

THEN check if any activity
. PRECON

has not been scheduled. FOR P0 2, P

IF there are any, THEN Y X(PO) = 0

order the already scheduled FLAG = 1

activities and prepare to go FLAG = 1

to GOBACK. ELSE go to O*OUTPUT
OUTPUT. ELSE go to PRECON. J20 N

9. (GOBACK) To prepare the FOR I I to J2 1

variables for going back FOR J = I + 1 to J2 1

either to schedule whatever \ V(I) > V(J) N

activities are left in S or N V(I)

to find a new competing set V(I) = V(J)

of activities. Update the V(J) = N

time clock.

GOBACK

CO= 1

FOR I = 1 to M

y X(S(I)) > 0

1 Cl = Cl +1 1

Y\ ~ Cl 4M

Ti = TI + 1

SCH

K3 = 0

FOR I O to M
Y X(S(I)) = 0_

K3 = K3 + 1

T1 = AX(TI,X(S(I)) TI TI +

D(S(I)) D D(S (1))

COMPET

24

10. (OUTPUT) To print the OUTPUT

calculated schedule. Print the output tables and

PREC - A block used to

calculate the vector image draw the sky line for each resource

of the adjacency matrix. RETURN

Then pass LL.

MAIN - The main program

that calls the subroutines
PREC

SETUP and HSP.

IXl = (J-I)*(P-J/2) - J + PO

LL = XB(IXI)

RETURN

MAIN

SETUP

HSP

END

25

List of Works Consulted

Davis, Edward W., (1973), "Project Scheduling Under Resource Constraints -

Historical Review and Categorization of Procedures," I.E. Transactions,
5(4), 297-313.

Elmaghraby, S.E., (1977), Activity Networks, Wiley, New York.

Hegelson, W.B. and Birnie, D.P., (1961), "Assembly Line Balancing Using
Ranked Positional Weight Technique," J. Ind. Eng., 13(6), 394-398.

Mansoor, E.M., (1964), "Assembly Line Balancing -- An Improvement on the
Ranked Positional Weight Technique," J. Ind. Eng., 15(2), 73-77.

Reingold, Nievergelt, and Deo, (1977), Combinatorical Algorithms, Theory
and Practice, Prentice-Hall, Englewood Cliffs, N.J.

